• Black/White
  • White/Black
  • Yellow/Blue
  • Standard

Current Style: Standard

-A A +A

Modelling Soil Carbon Dynamics of Two major Ecosystems of Humid Tropics_Gopika Rani.K.S_2010-20-103

Tue, 29/12/2020 - 12:18pm -- ccces.kau.in
Printer-friendly versionPDF version
TitleModelling Soil Carbon Dynamics of Two major Ecosystems of Humid Tropics_Gopika Rani.K.S_2010-20-103
Publication TypeThesis
Year of Publication2015
Academic DepartmentACCER
DegreeB.Sc.-M.Sc. (Integrated) Climate Change Adaptation
Number of Pages101p.
Date Published12/2015
UniversityKerala Agricultural University
Thesis TypeB.Sc.-M.Sc. (Integrated)
Call Number551.6 GOP/MO
Abstract

                          ACADEMY OF CLIMATE CHANGE EDUCATION AND RESEARCH

                                                    Kerala Agricultural University

Title of Thesis                : Modelling Soil Carbon Dynamics of Two major Ecosystems of Humid Tropics

Name of Student           : Gopika Rani K,S

Major Advisor               :Dr. Betty Bastin,

                                        Chairman, Advissory committee

                                        Professor (Soil Science and Agrl. Chemistry

                                        College of Horticulture, Vellanikkara, Thrissur

                                                                         Abstract

A study on “Modelling soil carbon dynamics of two major ecosystems of humid tropics” was carried out in the Academy of Climate Change Education and Research (ACCER) during 2014-2015. The study was done using two soil carbon models such as Roth-C and CENTURY. The objectives of the study included the evaluation of suitability of these two models in rice and teak ecosystems and also to analyse the soil organic carbon changes due to predicted climate change scenarios.

The study was based on secondary data sets collected from experiments done  in paddy fields and teak plantations of Pattambi and Thrissur areas respectively belonging to humid areas.The simulated total soil organic carbon (1965 to 2050) by Roth-C and CENTURY models was found to be declining in rice ecosystem. The active carbon in rice ecosystem showed decreasing trend and thereafter it was showing an increasing trend. In case of slow carbon it showed a gradual declining trend during the period from  1965 to 1990. There after it started to increase in a rapid manner during the next  eleven years and afterwards it started decreasing. The passive carbon in rice  ecosystem kept on increasing throughout the simulation period.

In teak ecosystem, both the models Roth-C and CENTURY predicted a declining trend of total soil organic carbon. The active carbon of teak ecosystem decreased by the end of third year and slowly increased by ninth year. By the end of fifty five year it showed a rapid decline and slowly increased by the following years. Slow carbon pool showed a declining trend  up to thirty years and kept on increasing  to the next thirty years. Then it showed a rapid decline and thereafter it started to increase. The passive carbon kept on decreasing throughout the period.The model efficiency of Roth-C and CENTURY models for rice ecosystem were 0.63 and 0.82, respectively whereas for teak ecosystem the values were 0.69 and0.88. Hence it was concluded that for simulation of soil organic carbon, both the models are suitable, but CENTURY model was more efficient than Roth- C model.From the study based on different RCP scenarios, RCP 8.5 had predicted higher temperature and precipitation values compared to others (RCP 6.0, RCP 4.5  and RCP 2.6) over both Pattambi and Vellanikkara. In rice ecosystem, it was noticed that in 2015 and 2050, RCP 2.6 recorded the highest values of total soil organic  carbon and the lowest values were by RCP 8.5, respectively. In the  case  active carbon, RCP 4.5 recorded the highest values and RCP 8.5 recorded the lowest values. The highest value of slow carbon was recorded by RCP 2.6 and the lowest by RCP 8.5. The predicted values of passive carbon showed highest values by RCP 6.0 and recorded the lowest by RCP 4.5.In the study based on predicted climate change scenarios in teak ecosystem, RCP 4.5 recorded highest values of total soil organic carbon in 2015 and 2050 where as the lowest value was found by RCP 6.0 in 2015 and RCP 8.5 in 2050. The highest value of active carbon was found in 2015 by RCP 4.5 and in 2050 by RCP 2.6. The lowest values of active carbon were recorded by RCP 6.0 and RCP 8.5 in 2015 and 2050 respectively. In 2015 the highest value of slow carbon was recorded by RCP 4.5 and in 2050 by RCP 2.6. The least value of slow carbon was recorded in 2015 by   RCP 6.0 and in 2050 by RCP 8.5. The passive carbon simulated by different RCPs, it was observed that RCP 4.5 predicted the highest value in 2015 and 2050. Then the lowest values recorded by RCP 6.0, respectivelyThe present study indicated that modelling is suitable for studying carbon dynamics in soils under rice and teak ecosystems. It highlights the potential of CENTURY model over Roth-C model in terms of simulation of soil carbon. Using different scenarios it is possible to know that, what might be the future conditions of soil carbon and its different pools.

 

 

Translations

English Arabic French German Hindi Italian Russian Spanish

Address

:+91-487-2438620
:+91-487-2371599